Mitarbeiter*innen

Prof. Dr. Anna Fischer
Sprecherin
Stellvertretende Koordinatorin Forschungsbereich A
Principal Investigator Forschungsbereiche A und B
Ordentliche Professorin für funktionelle anorganische Materialien
Fakultät für Chemie und Pharmazie | Institut für Anorganische und Analytische Chemie
Albert-Ludwigs-Universität Freiburg
Tel.: +49 761 203 95098 | +49 761 203 8717
E-Mail: anna.fischer@ac.uni-freiburg.de
Areas 0f Expertise
Nanostrukturierte funktionelle Materialien - Synthese und Charakterisierung | Elektrochemie | Elektrokatalyse | Photoelektrokatalyse
Projekte in livMatS
- NANOTRET: Nanomikrostrukturierte, permanent geladene Oberflächen für Elektret-Nanogeneratoren
- Development, characterisation and integration of flexible solar modules as energy supply unit in a livMatS demonstrator
- Inorganic and Organic SolStore
- Entwicklung, Charakterisierung und Integration von flexiblen Solarmodulen als Energieversorgungseinheiten in einem livMatS-Demonstrator
Doktorand*innen (Erstbetreuerin)
Postdoktorand*innen (Erstbetreuerin)
Publikationen in livMatS
- On a high-capacity aluminium battery with a two-electron phenothiazine redox polymer as positive electrode
Studer, G., Schmidt, A., Büttner, J., Schmidt, M., Fischer, A., Krossing, I., & Esser, B. (2023). On a high-capacity aluminium battery with a two-electron phenothiazine redox polymer as positive electrode. Energy & Environmental Science, doi: 10.1039/D3EE00235G - Immobilization of O2-tolerant [NiFe] hydrogenase from Cupriavidus necator on Tin-rich Indium Oxide Alters the Catalytic Bias from H2 Oxidation to Proton Reduction*
Davis, V., Heidary, N., Guiet, A., Zerball, M., Schulz, C., Michael, N., von Klitzing, R., Hildebrandt, P., Frielingsdorf, S., Lenz, O., Zegber, I. & Fischer, A. (2023). Immobilization of O2-tolerant [NiFe] hydrogenase from Cupriavidus necator on Tin-rich Indium Oxide Alters the Catalytic Bias from H2 Oxidation to Proton Reduction. ACS Catalysis, 13, 6312-6327. doi: 10.1021/acscatal.2c06334 - Cluster of Excellence Living, Adaptive and Energy-Autonomous Materials Systems (livMatS)*
Speck, T., Schulz, M.E., Fischer, A., Rühe, J. (2023). Cluster of Excellence Living, Adaptive and Energy-Autonomous Materials Systems (livMatS). In: Dröder, K., Vietor, T. (eds) Future Automotive Production Conference 2022. Zukunftstechnologien für den multifunktionalen Leichtbau. Springer Vieweg, Wiesbaden. doi: 10.1007/978-3-658-39928-3_18 - Rhenium-Based Electrocatalysts for Water Splitting*
Ramírez, A. M., Heidari, S., Vergara, A., Aguilera, M. V., Preuss, P., Camarada, M. B., & Fischer, A. (2023). Rhenium-Based Electrocatalysts for Water Splitting. ACS Materials Au. doi: 10.1021/acsmaterialsau.2c00077 - Immobilizing Poly(vinylphenothiazine) in Ketjenblack-Based Electrodes to Access its Full Specific Capacity as Battery Electrode Material*
Tengen, B., Winkelmann, T., Ortlieb, N., Perner, V., Studer, G., Winter, M., Esser, B., Fischer, A., & Bieker, P. (2023). Immobilizing Poly (vinylphenothiazine) in Ketjenblack‐Based Electrodes to Access its Full Specific Capacity as Battery Electrode Material. Advanced Functional Materials, 2210512. doi: 10.1002/adfm.202210512 - Are Halide-Perovskites Suitable Materials for Battery and Solar-Battery Applications–Fundamental Reconsiderations on Solubility, Lithium Intercalation, and Photo-Corrosion*
Büttner, J., Berestok, T., Burger, S., Schmitt, M., Daub, M., Hillebrecht, H., Krossing, I., & Fischer, A. (2022). Are Halide‐Perovskites Suitable Materials for Battery and Solar‐Battery Applications–Fundamental Reconsiderations on Solubility, Lithium Intercalation, and Photo‐Corrosion. Advanced Functional Materials, 2206958. doi: 10.1002/adfm.202206958 - Size Effect in SnO2/Al2O3 Core/Shell Nanowires after Battery Cycling*
Bürger, J., Lee, S., Penn, A., Gutsch, S., Kolhep, M., Büttner, J., Fischer, A., Ross, F. M., Zacharias, M. (2022). Size Effect in SnO2/Al2O3 Core/Shell Nanowires after Battery Cycling. Advanced Energy & Sustainability Research. doi: 10.1002/aesr.202200098 - A New Figure of Merit for Solar Charging Systems: Case Study for Monolithically Integrated Photosupercapacitors Composed of a Large-Area Organic Solar Cell and a Carbon Double-Layer Capacitor*
Delgado Andrés, R., Berestok, T., Shchyrba, K., Fischer, A., & Würfel, U. (2022). A New Figure of Merit for Solar Charging Systems: Case Study for Monolithically Integrated Photosupercapacitors composed of a Large Area Organic Solar Cell and a Carbon Double‐Layer Capacitor. Solar RRL. doi: 10.1002/solr.202200614 - A Monolithic Silicon-Mesoporous Carbon Photosupercapacitor with High Overall Photoconversion Efficiency*
Berestok, T., Diestel, C., Ortlieb, N., Glunz, S. W., & Fischer, A. (2022). A Monolithic Silicon‐Mesoporous Carbon Photosupercapacitor with High Overall Photoconversion Efficiency. Advanced Materials Technologies, 2200237. doi: 10.1002/admt.202200237 - Electrochemical Stability of Platinum Nanoparticles Supported on N-Doped Hydrothermal Carbon Aerogels as Electrocatalysts for the Oxygen Reduction Reaction*
Martin, J., Melke, J., Njel, C., Schökel, A., Büttner, J., & Fischer, A. (2021). Electrochemical Stability of Platinum Nanoparticles Supported on N‐Doped Hydrothermal Carbon Aerogels as Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 8(24), 4835-4847. doi: 10.1002/celc.202101162 - Spruce Hard Carbon Anodes for Lithium-Ion Batteries*
Drews, M., Büttner, J., Bauer, M., Ahmed, J., Sahu, R., Vierrath, S., Fischer, A. & Biro, D. (2021). Spruce Hard Carbon Anodes for Lithium‐Ion Batteries. ChemElectroChem. doi: 10.1002/celc.202101174 - Rapid wet-chemical oxidative activation of graphite felt electrodes for vanadium redox flow batteries*
Shanahan, B., Seteiz, K., Heizmann, P. A., Koch, S., Büttner, J., Ouardi, S., Vierrath, S., Fischer, A., & Breitwieser, M. (2021). Rapid wet-chemical oxidative activation of graphite felt electrodes for vanadium redox flow batteries. RSC Advances, 11(51), 32095-32105. doi: 10.1039/D1RA05808H - High-Efficiency Monolithic Photosupercapacitor – A Smart Integration of a Perovskite Solar Cell with a Mesoporous Carbon Double-Layer Capacitor*
Berestok, T., Diestel, C., Ortlieb, N., Büttner, J., Matthews, J., Schulze, P. S., Goldschmidt, J., Glunz, S. W., & Fischer, A.(2021). High‐Efficiency Monolithic Photosupercapacitor–A Smart Integration of a Perovskite Solar Cell with a Mesoporous Carbon Double‐Layer Capacitor. Solar RRL. doi: 10.1002/solr.202100662 - Ultra-Thin Protective Coatings for Sustained Photoelectrochemical Water Oxidation with Mo:BiVO4*
Beetz, M., Häringer, S., Elsässer, P., Kampmann, J., Sauerland, L., Wolf, F., Günther, M., Fischer, A., & Bein, T. (2021). Ultra‐Thin Protective Coatings for Sustained Photoelectrochemical Water Oxidation with Mo: BiVO4. Advanced Functional Materials, 2011210. doi: 10.1002/adfm.202011210 - Hydrophobic AlOx Surfaces by Adsorption of a SAM on Large Areas for Application in Solar Cell Metallization Patterning*
Hatt, T., Bartsch, J., Davis, V., Richter, A., Kluska, S., Glunz, S. W., Glatthaar, M. & Fischer, A. (2021). Hydrophobic AlOx Surfaces by Adsorption of a SAM on Large Areas for Application in Solar Cell Metallization Patterning. ACS Applied Materials & Interfaces, 13(4), 5803-5813. doi: 10.1021/acsami.0c20134 - Fluorination of Ni‐Rich Lithium‐Ion Battery Cathode Materials by Fluorine Gas: Chemistry, Characterization, and Electrochemical Performance in Full‐cells*
Breddemann, U., Sicklinger, J., Schipper, F., Davis, V., Fischer, A., Huber, K., Erickson, E. M., Daub, M., Hoffmann, A., Erk, C., Markovsky, B., Aurbach, D., Gasteiger, H. A., & Krossing, I. (2020). Fluorination of Ni‐rich Lithium Ion Battery Cathode Materials by Fluorine Gas: Chemistry, Characterization and Electrochemical Performance in Full‐cells. Batteries & Supercaps. doi: 10.1002/batt.202000202 - Investigating the Effect of Microstructure and Surface Functionalization of Mesoporous N-doped Carbons on V4+/V5+ Kinetics*
Melke, J., Martin, J., Bruns, M., Hügenell, P., Schökel, A., Montoya Isaza, S., Fink, F., Elsässer, P., Fischer, A. (2020). Investigating the Effect of Microstructure and Surface Functionalization of Mesoporous N-doped Carbons on V4+/V5+ Kinetics. ACS Applied Energy Materials, 3(12), 11627-11640. doi: 10.1021/acsaem.0c01489
* Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – EXC-2193/1 – 390951807